| ~ 4 T | | | | | | • | | | | | | 4.1 | | |---------------|---------|---------|--------|-----------|-----|-----|--------|--------|------|-------|-----------|-------|-------------| | ()1 | he acid | dissoci | ıatı∩n | constant, | ĸ | tor | ethano | C 2010 | l IC | aiven | h\/ | the e | mressinn | | Q (1.1 | ne acid | uissuu | auon | constant, | va, | 101 | Culano | c acid | ııo | given | ν_{y} | | (PI COOIOII | $$K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$$ The value of K_a for ethanoic acid is 1.74 × 10⁻⁵ mol dm⁻³ at 25 °C. | (a) | A buffer solution is prepared using ethanoic acid and sodium ethanoate. In the buffer solution, the concentration of ethanoic acid is 0.186 mol dm ⁻³ and the concentration of sodium ethanoate is 0.105 mol dm ⁻³ . | |-----|--| | | Calculate the pH of this buffer solution. Give your answer to 2 decimal places. | (b) | In a different buffer solution, the concentration of ethanoic acid is 0.251 mol dm ⁻³ and the concentration of sodium ethanoate is 0.140 mol dm ⁻³ . | | | A sample of hydrochloric acid containing 0.015 mol of HCl is added to 1000 cm ³ of this buffer solution. | | | Calculate the pH of the buffer solution after the hydrochloric acid has been added. You should ignore any change in total volume. Give your answer to 2 decimal places. | | | | | | | (3) | (5) | | | |-----------------|--|------| | (Total 8 marks) | (| | | | | | | | | | | | ution of chlorine in water is acidic. Swimming pool managers maintain pool watenstant pH by using a buffer. They do so by adding sodium hydrogencarbonate addium carbonate. | cons | | Vrite an | Hydrogen carbonate ions (HCO $_3^-$) act as a weak acid in aqueous solution. We equation for this equilibrium. | (a) | | | | | | | | | | (1) | | | | | | | | mounts | Use the equation in part (a) to explain how a solution containing sodium hydrogencarbonate and sodium carbonate can act as a buffer when small are of acid or small amounts of alkali are added. | (b) | (3) | | | | (-) | | | - **Q3.**When 1.00 mol dm⁻³ solutions of salicylic acid and sodium hydroxide are mixed a buffer solution can be formed. Salicylic acid is a monoprotic acid that can be represented by the formula HA. - (a) Select a mixture from the table below that would produce a buffer solution. Give a reason for your choice. | Mixture | Volume of 1.00 mol dm ⁻³ salicylic acid solution / cm ³ | Volume of 1.00 mol dm ⁻³ sodium hydroxide solution / cm ³ | |---------|---|---| | х | 25 | 75 | | Y | 50 | 50 | | Z | 75 | 25 | | | Reason | | |-----|--|-------------| | | | | | | | (2) | | | | | | | | | | (b) | Another mixture, formed by adding 50 cm 3 of 1.00 mol dm $^{-3}$ salicylic acid solution to 25 cm 3 of 1.00 mol dm $^{-3}$ sodium hydroxide solution, can be used to determine the p K_a of salicylic acid. State one measurement that must be made for this mixture and explain how this measurement can be used to determine the p K_a of salicylic acid. | | | | Measurement | | | | Explanation | | | | | | | | | | | | (Total 5 ma | (3)
rks) | | In th | is que | estion, all data are quoted at 25 °C. | | |-------|--------|---|----| | (a) | Car | boxylic acids are weak acids. | | | | Stat | e the meaning of the term weak as applied to carboxylic acids. | | | | | | | | | | | /4 | | | | | (1 | | | | | | | (b) | Wri | te an equation for the reaction of propanoic acid with sodium carbonate. | | | | | | (1 | | | | | ١. | | | | | | | (c) | | culate the pH of a 0.0120 mol dm ⁻³ solution of calcium hydroxide. ionic product of water $K_w = 1.00 \times 10^{-14}$ mol ² dm ⁻⁶ . | | | | | e your answer to 2 decimal places. | (Ext | ra space) | | | | | | | | | | | (3 | | | | | (, | | | | | | | (d) | | e value of the acid dissociation constant K_s for benzenecarboxylic acid H_s COOH) is 6.31×10^{-5} mol dm $^{-3}$. | | | | (i) | Write an expression for the acid dissociation constant $K_{\scriptscriptstyle a}$ for benzenecarboxylic acid. | | | | | | | **Q4.**This question is about alkalis and carboxylic acids. | | | (1) | |-------|--|-----| | (ii) | Calculate the pH of a 0.0120 mol dm ^{-₃} solution of benzenecarboxylic acid. Give your answer to 2 decimal places. | (Extra space) | | | | | | | | | (3) | | (iii) | A buffer solution with a pH of 4.00 is made using benzenecarboxylic acid and sodium benzenecarboxylate. | | | | Calculate the mass of sodium benzenecarboxylate (M_c = 144.0) that should be dissolved in 1.00 dm ³ of a 0.0120 mol dm ⁻³ solution of benzenecarboxylic acid to produce a buffer solution with a pH of 4.00 | | | | The value of the acid dissociation constant K_a for benzenecarboxylic acid (C_aH_aCOOH) is 6.31×10^{-6} mol dm ⁻³ . | (Extra space) | | |-----|---|-------------| | | | | | | | | | | | (5) | | | | | | (e) | Two solutions, one with a pH of 4.00 and the other with a pH of 9.00, were left open to the air. | | | | The pH of the pH 9.00 solution changed more than that of the other solution. | | | | Suggest what substance might be present in the air to cause the pH to change. Explain how and why the pH of the pH 9.00 solution changes. | | | | Substance present in air | | | | Explanation | | | | | | | | | | | | | | | | | (3)
rks) | | | (10tal 17 lila | | **Q5.**Ethanedioic acid is a weak acid. Ethanedioic acid acts, initially, as a monoprotic acid. (a) Use the concept of electronegativity to justify why the acid strengths of ethanedioic | | acid and ethanoic acid are different. | | |-----|---|----| (6 | | | | | | (b) | A buffer solution is made by adding 6.00×10^{-2} mol of sodium hydroxide to a solution containing 1.00×10^{-1} mol of ethanedioic acid ($H_2C_2O_4$). Assume that the sodium hydroxide reacts as shown in the following equation and that in this buffer solution, the ethanedioic acid behaves as a monoprotic acid. | | | | $H_2C_2O_4(aq) + OH^-(aq) \longrightarrow HC_2O_4-(aq) + H_2O(I)$ | | | | The dissociation constant K_a for ethanedioic acid is 5.89 × 10 ⁻² mol dm ⁻³ . | | | | Calculate a value for the pH of the buffer solution. Give your answer to the appropriate number of significant figures. | pH = | (5 | | | | (0 | | (c) | In a titration, the end point was reached when 25.0 cm³ of an acidified solution containing ethanedioic acid reacted with 20.20 cm³ of 2.00 ×10-² mol dm-³ potassium manganate(VII) solution. | | | | Deduce an equation for the reaction that occurs and use it to calculate the original concentration of the ethanedioic acid solution. | | | Calculation | | |---|-------------------------| | | | | | | | | | | | | | | | | Original concentration = mol dm ⁻³ | (4)
(Total 15 marks) | Equation